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Summary

A wind tunnel test of an executive-jet baseline
airfoil model was conducted in the adaptive-wall test

section of the NASA Langley 0.3-Meter Transonic

Cryogenic Tunnel. The primary goal of the test

was to measure airfoil aerodynamic characteristics

over a wide range of flow conditions that encompass

two design points. The two design Mach numbers
were 0.654 and 0.735 with corresponding Reynolds
numbers of 4.5 x 106 and 8.9 x 106 based on chord,

respectively, and normal-force coefficients of 0.98

and 0.51, respectively. The tests were conducted
over a Mach number range from 0.250 to 0.780 and

a chord Reynolds number range from 3.0 x 106 to

18.0 × 106. The angle of attack was varied from -2 °

to a maximum below 10 ° with one exception in which
the maximum was 14 ° for a Mach number of 0.250

at a chord Reynolds number of 4.5 x 106. Boundary-

layer transition was fixed at 5 percent of chord on

both the upper and lower surfaces of the model for
most of the test. The adaptive-wall test section had

flexible top and bottom walls and rigid sidewalls.

Wall interference was minimized by the movement

of the adaptive walls, and the airfoil aerodynamic
characteristics were corrected for any residual top
and bottom wall interference.

The data arc presented graphically as integrated
force and moment coefficients and chordwise pres-

sure distributions. For increasing Mach number, the
maximum normal-force coefficient decreases. With

increasing Mach number at a constant normal-force

coefficient in the linear region, an increase occurs
in the variation of normal-force coefficient with an-

gle of attack, in the negative pitching-moment co-

efficient, and in the drag coefficient. With increasing

Reynolds number at a constant normal-force co-
efficient, the negative pitching-moment coefficient

becomes more neggtive and the drag coefficient de-
creases. Thc pressure distributions reveal that sep-

aration begins at the trailing edge. Free transition

results in lower drag coefficients and slightly stronger

negative pitching-moment coefficients.

Introduction

The Langley Research Center has bccn involved

in a cooperative program with the Cessna Aircraft

Company to design and test preliminary airfoils and
wings for a proposed executive-jet configuration. The

objectivc of this program was to apply Langley-

developed advanced computational fluid dynamics

(CFD) design methods to improve the overall per-
formance of a baseline executive-jet configuration.

Part of the cooperative program involved a base-
line airfoil and two design points that were pro-

vided by the Cessna Aircraft Company. The design

points were for low- and high-speed cruise and con-
sisted of the following combinations of Mach num-

ber, chord Reynolds number, and normal-force co-
efficient: 0.654, 4.5 x 106, and 0.98, respectively; and

0.735, 8.9 x 106, and 0.51, respectively. A multipoint

design approach which used the Constrained Direct

Iterativc Surface Curvature (CDISC) design method

(ref. 1) was used to design a modified airfoil that had
a lower predicted wave drag at both design points.

The purpose of the current paper is to present

wind tunnel aerodynamic characteristics for the base-
line airfoil. The tests were conducted in the Langley

0.3-Meter Transonic Cryogenic T_nnel (0.3-m TCT)
for Mach mlmbers from 0.250 to 0.780 and chord

Reynolds numbers from 3.0 × 106 to 18.0 x 106. The

angle of attack ranged from -2 ° to a maximum be-
low 10 ° with one exception in which the maximum
was 14 ° for a Mach number of 0.250 at a chord

Reynolds number of 4.5 x 106. The upper limit on

angle of attack was usually determined by model stall
and sometimes by the inability of the adaptive walls

to adjust to high lift levels. Boundary-layer transi-

tion was fixed at 5 percent of chord on both the up-

per and lower surfaces of the airfoil model for most
of the test. The 6-in-chord model spanned the width
of the test section and was instrumented for chord-

wise pressure distribution measurements. A wake
rake was used to measure pressure losses for drag
determination.

Symbols

The measurements and calculations were made in

the U.S. Customary Units. The symbols used in this

report are defined as follows:

c

Cd

c_t

clt,max

Cp

D

kloc

Rc

model chord (c = 6 in.)

section drag coefficient, measured on
tunnel centerline

section pitching-moment coefficient,
resolved about x = 0.25c

section normal-force coefficient

section maximum normal-force

coefficient

local pressure coefficient

pressure coefficient for sonic condition

diameter

free-stream Mach number

free-stream Reynolds number based on
model chord



X

Y

OL

chordwise position, measured aft from

leading edge, in.

vertical position, measured up from

model chord plane, in.

angle of attack, deg

Wind Tunnel

The tests were conducted in the 13- by 13-in. two-

dimensional adaptive-wall test section of the Langley
0.3-m TCT. A sketch of the tunnel is presented in fig-

ure 1, and a photograph of the upper leg of the tun-

nel circuit is presented in figure 2. The 0.3-m TCT

is a fan-driven, cryogenic pressure tunnel that uses

gaseous nitrogen as a test medium. It is capable

of operating at stagnation temperatures from just
above the boiling point of liquid nitrogen (approxi-

mately 144°R (80 K)) to 589°R (327 K) and at stag-

nation pressures from 1.2 to 6.0 atm. The fan speed is
variable so that the empty test section Mach number

can be varied continuously from about 0.20 to 0.95.
This combination of test conditions provides a test

envelope of chord Reynolds numbers up to about
50 × 106 based on a model chord of 6 in. Additional

details of the tunnel may be found in reference 2.

Wind tunnels with adaptive walls attempt to cIinfi-
hate the wall-induced interference at its source. This

is accomplished by modifying the flow field near thc
test section boundaries such that the flow field in the

vicinity of the model duplicates "free air" conditions.
Specific details of the method are given in rcferen-e 3.

Test Section

Skctches of the adaptive-wall test section with

the plemlm sidewall removed are presented in fig-

ure 3, and photographs of the tcst section region arc
presented in figures 4 and 5. The model mounting

system is designed for two-dinlensional models with

chords up to 13 in. A model is supported between
two turntables centered 30.7 in. downstream of the

test section entrance. The turntables are driven by

an electric stepper motor that is connected through

a yoke to tile perimeter of both turntables. This ar-

rangement drives both turntables to eliminate pos-
sible model twisting. The angular position of the

turntables, and therefore the geometric angle of at-
tack of the model, is measured using a digital shaft

encoder geared to the left turntable.

The test section is 13 in. by 13 in. at the entrance,

and all four walls are solid. The sidewalls are rigid

whereas the top and bottom walls are flexible and
movable. The flexible walls are 71.7 in. long and arc

anchored at the upstream end. The rear 15.9-in. por-

tion diverges 4.1 ° to form a transition between the

test section and the high-speed diffuser. The test sec-

tion is therefore considered to be 55.8 in. long. The

shape of each wall is determined by 21 independent

jacks. The jack locations relative to the center of
the model-mounting turntable are presented in ta-

ble 1. Each wall-positioning jack is driven by a step-

per motor located outside the test section plenum.

The jacks have a design displacement range of 3 in.

up and 1 in. down. However, the available displace-
ment for each jack varies because of limits on allow-
able wall stress due to curvature. Pressure orifices

are located on the top and bottom wall centerlines

at the jack positions and 1.0 in. upstream of the wall
anchor point. The jack at -1.75 in. (upstream of the

turntable) on the bottom wall was inoperative during
this test. Because the connection between this jack

and the flexible wall was removed, the wall displace-
ment could not be determined at this station. The

wall was frec to "float" to a position determined by

the jack just upstream and the jack just downstream

of the inoperative jack.

Wake Rake

A horizontal rake is used to survey the wake pres-

sure field. A vertical traversing mechanism moves the
rake within the limits of 3 in. below to 5 in. above

the centerline. The traversing mechanism is driven

by a stepper motor mounted externally to the tun-
nel, and tile number of steps used to traverse the

wake is 75 for this test. The vertical position of the

traversing mechanism is measured by a digitM shaft

encoder geared to the stepper motor. The traversing

mechanism supports a wake rake with three static
and six total pressure probes (tubes), as shown in

figure 6. This arrangement allows the total pressure
variation in the model wake to be determined at six

spanwise locations. The wake rake can be installed

at one of three streamwisc stations, the forward, cen-

ter, and rear stations, which are located at 12.5, 17.5,
and 22.5 in., respectively, downstream of the center of
tile turntable. The wake rake should be 1 or 2 chords

or more downstream of the model trailing edge to

avoid aerodynamic interference with the model. For
this test, the wake rake is located at the center sta-

tion (fig. 7), which is 2.17 model chords downstream
of the model trailing edge.

Model

The model used in this test was supported by

mounting blocks, as shown in figure 8, and the blocks
were bolted to the tunnel-wall turntables. The model

chord was on the test section centerline, and the

angle of attack was changed by rotation about the

0.513c position. The model had a 6-in. chord, a 13-in.



span,anda baselineairfoil sectionthat was0.115c
thick with the maximumthicknessat 0.31c. The
leading-edgeradiuswas0.016c. The designand
measuredmodelcoordinatesarepresentedin tables2
and3,respectively,andasketchoftheairfoilsection
is presentedin figure9. The maximumdifference
betweenthemeasuredprofileandthedesignprofile
was0.0004c.

Themodelwasequippedwith 46 pressure orifices:
20 on the lower surface in a chordwise row at the

spanwise center and 26 on the upper surface in an
offset chordwise row. For ease of fabrication, the

upper surface row of orifices was offset 0.5 in. to

the right from the spanwise center and the upper

surface orifices in the nose region (for x < 0.4 in.)

were staggered to within ±0.05 in. in the spanwise
direction. The chordwise orifice locations, which are

shown in the airfoil sketch in figure 9 are listed in
table 4. All the orifices were 0.010 in. in diameter.

Test Instrumentation

A detailed discussion of the instrumentation and

procedures for the calibration and control of the
0.3-m TCT can bc found in reference 4. For two-

dimensional airfoil tests, the 0.3-m TCT is equipped

to obtain static pressure measurements on the airfoil
model surface, total pressure measurements in the

model wake, and static pressure measurements on

the test section sidewalls, top wall, and bottom wall.

The following sections describe instrumentation for
tunnel flow conditions, airfoil model pressures, wall

pressures, and wake pressures.

Tunnel Flow Conditions

The tunnel flow conditions are determined by

three primary measurements: total pressure, static

pressure, and total temperature. The total pressure

and static pressure are measured by individual quartz
differential pressure transducers referenced to a vac-

uum to function as absolute pressure devices. Each

transducer has a range of ±100 psi and an accuracy
of ±0.006 psi plus 4-0.012 percent of the pressure

reading. The stagnation temperature is measured by

a platinum resistance thermometer. The analog out-
put from each of these devices is converted to digital

form by individual digital voltmeters for display and

recording.

Airfoil Model Pressures

The pressures on the airfoil model are mea-
sured by individual transducers connected by tub-

ing to each orifice on the model. The transducers

are a high-precision variable-capacitance type. The

maximum range of these differential transducers is

4-100 psi with an accuracy of 4-0.25 percent of the

reading from -25 percent to 100 percent of full scale.

They are located outside the high-pressure cryogenic
environment of the tunnel but as close as possible

to the test section to minimize the tubing length

and reduce the response time. To provide increased

accuracy, the transducers are mounted on thermo-

statically controlled heater bases to maintain a con-
stant temperature and on "shock" mounts to reduce

possible vibration effects. The electrical signals from

the transducers are processed by individual signal
conditioners located in the tunnel control room. The

signal conditioners are autoranging and have seven

ranges available. As a result of the autoranging ca-
pability, the analog output to the data acquisition

systcm is kept at a high level even though the pres-

sure transducer may be operating at the low end of

its range.

Wall and Wake Pressures

The top and bottom flexible-wall pressures arc

measured using a pressure scanning system operating
two 48-port valves. Because of the large changes in

the pressure of the tunnel over its operational range,

the same type of variable-capacitance pressure trans-
ducers and autoranging signal conditioners described

above are used with the pressure scanning system

instead of the more typical strain gauge transducer.

The total pressure loss in the model wake is mea-
sured with the rake described previously. The pres-

sure in each of the six total pressure tubes is mea-

sured with the same type of variable-capacitance

pressure transducer described above but with a max-

imum range of 4-20 psi. The static pressure in the
model wake is the average of measured pressures on

the right sidewall at eight vertical positions at the

tunnel station of the wake rake (which is on the left
sidewall). The static pressure probes on the rake

wcre not used because they have not provided reliable

data in the past.

Procedures

Test conditions were chosen to cover a wide range

of Mach numbers and Reynolds numbers that encom-

pass two design points (Moc= 0.654, Rc = 4.5 x 106,
and cn = 0.98; and Mcc = 0.735, Rc = 8.9 x 106, and

c,, = 0.51). Table 5 shows the combinations of M_c
versus Rc (written herein as Moo--Re) in the test pro-

gram, and dashed underlines indicate the combina-

tions for the two design points. Fignlre numbers are
listed in table 5 for each M_c-Rc combination in the

program as an aid to locating pressure data for given

test conditions. (The Maeh numbers in the text, in

3



table5, andin the figuretitles arenominalvalues,
whereasthe Machnumbersin the figurekeysare
slightlydifferentbecausetheyaremeasuredvalues.)

Most of the test wasconductedwith transition
stripsplacedat the5-percent-chordlocationonboth
surfacesof themodelsothat boundary-layertransi-
tion locationswouldbcknown.Theauthorsassumed
that the 5-percent-chordlocationwouldbc behind
thestagnationpointandin frontof thenaturaltran-
sitionlocationonbothsurfacesof themodelfor the
conditionsof this test.Thegrit sizewasdetermined
by usingthemethodof reference5 for a Reynolds
numberof 9x 106per foot (Rc=4.5× 106). The
glasscompoundtransitiongrit usedfor this testwas
class5 close-sizedunisphcresof 0.0016-in.nominal
diameter,andthe stripswereapproximately1/16in.
wide. The transitionstripswereremovednearthe
endof tile test andsomefree-transitiondatawere
taken.

Thefollowingprocedurewasusedto setthetest
conditions. The tunnel total pressure,total tem-
perature,and fan speedwereset for the desired
MachnumberandReynoldsnumber,andthemodel
turntablewasadjustedto the desiredangleof at-
tack. Whenthetest conditionsbecamestable,the
wall-adaptationprocessin reference3 wasinitiated,
andafter completion,the flexible-wallpositionand
static pressuresassociatedwith the adaptedwalls
wererecordedon the data tape. Twentysamples
of the airfoil static pressures,the test conditions,
the wakeraketotal pressures,and thewakestatic
pressureswerethenrecordedduringa 1-secinterval.
Eachsampleconsistedof simultaneousstatic pres-
surereadingsfrom all orificeson tile model. The
wakerakewasmovedto the next verticallocation
andanother20samplesofwakedatawererecorded.
Wakedatawcrcobtainedat 75verticallocationsof
themodelwakerake.

Data Reduction
Becausethe tunneloperatingenvelopeincluded

highpressuresandlowtemperatures,real-gaseffects
wereincludedin the data reductionfor the tun-
nel test conditionsusingthe thermodynamicprop-
ertiesof nitrogengascalculatedfrom the Beattie-
Bridgemanequationof state.Thisequationof state
wasshownin reference6to giveessentiallythesame
thermodynamicpropertiesand flowcalculationre-
sultsasweregivenbythemorecomplicatedJacobsen
equationof statefor thetemperature-pressurerealm
ofthe0.3-mTCT. Detaileddiscussionsofreal-gasef-
fectswhentestingin cryogenicnitrogenweregivenin
references7 and8. Wall interferencewasminimized
by appropriatemovementof the flexible(adaptive)

walls. The methodof reference9 wasusedto cor-
rect thedata for anyresidualtop andbottomwall
interferenceeffects.

Integrated Coefficients
Sectionnormal-forceand pitching-momentco-

efficientswerecalculatedbyintegrationof measured
surfacepressures.A polynomialcurvefit (ref. 10)
of themeasuredpressurecoefficientswasusedto en-
rich thedistributionof pointsby a factorof 10,fol-
lowedby the trapezoidalmethodof integration.A
gapoccurredin the measuredpressuredistribution
fromx = 0.0107c to 0.0604c on the upper surface be-
cause three successive orifices had leaks inside the

model and thus were missing in the reduced data.

The slope of the pressure distribution at x = 0.0107c
was not defined well enough for a meaningful curve

fit in the region of the missing orifices. Therefore, a

pressure coefficient, taken as the average of those for
the orifices at x = 0.0048c and 0.0107c, was added

at an x position determined by quadratic interpola-

tion using pressure coefficients from the orifices at
x = O.O000c, 0.0048c, and 0.0107c. Linear interpola-

tion was used when, for a _ -2 °, the coefficient of

the squared term in the quadratic interpolation equa-

tion was negative because the negative term caused
the curvature to be incompatible with that of the

experimental data. The result was that in the re-

gion of the missing orifices, the character of the
curve fits with the interpolated point more closely re-

sembled the character of pressure distributions pre-

dicted by the two-dimensional (2D) transonic full-

potential code of reference 11. Figure 10 illustrates
the result of this process for the flow condition in
which M_c _ 0.700, Rc = 6.5 × 106, and cn = 0.69

(a = 2.1°).

The section drag coefficient was calculated from
the wake survey pressures by first computing an

incremental or point drag coefficient by the method
of reference 12 for each rake tube total pressure at

each rake location. These point drag coefficients

were then numerically integrated across the model
wake in the vertical direction using the trapezoidal

method. The results of this integration are total drag

coefficients at each of the six spanwise locations of

the wake rake total pressure tubes. All drag data

presented in this report are for the total pressure tube
on the tunnel ccnterline.

Two-Dimensional Flow

The pressure data for each of the six total pres-
sure tubes were examined to ensure that the wake

survey covered the entire wake and to determine
when two-dimensional flow was not present across



the model. Thedata fromthe tube that was1 in.
fromthesidewall(fig.6)werenotconsistentwith the
datafromtheotherfivetotal pressuretubes,prob-
ablybecausethis tubeis immersedin thecombined
sidewallboundarylayerandmodelwake.Therefore,
this tubewasnot includedin thefinal data reduc-
tion. An examinationof thespanwisedistributions
ofsectiondragcoefficientshowedthat asthenormal-
forcecoefficientincreasedabovea certainlevel,the
sectiondragbeganto vary acrossthe span,an in-
dicationthat two-dimensionalflowwasbeginningto
breakdown. This cn level decreased with increas-

ing Mach number. The flow was considered to be

two dimensional when the section drag coefficient was

within -t-10 percent of the section drag coefficient at
the centerline of the tunnel. Two-dimensional flow

was measured across the centerline and two adjacent

total pressure tubes (at least one-third of the model

span) for normal-force coefficients up to 0.1 below the
maximum normal-force coefficient for each run. Cau-

tion should be exercised when using data in which
the normal-force coefficient is close to the maximum

(within 0.1 of Cn,max) for a given Math number.

Presentation of Data

The data from this test are presented graphically

and were taken with fixed transition except where

noted. Data repeatability is presented, which is

followed by the effects of Moc and Rc on integrated
force and moment coefficients. Then, the effect of c_

on chordwise pressure distributions at all 26 flow

conditions is presented. Finally, the limited amount
of data available for free transition is presented.

Data Repeatability

Data repeatability for the wind tunnel test was
examined by repeating an angle-of-attack variation

at a given subsonic condition and then by repeating

one angle of attack at a given transonic condition
several times during the test. An angle-of-attack
variation at 214r_ _ 0.250 and Rc = 4.5 x 106, which

was a tunnel checkout run on the first day of the test

(run A in fig. 11), was repeated (run B in fig. 11)
on the second day. For those two runs, force and

moment data were compared (figs. ll(a) and 11(5))

and pressure distributions for angles of attack of 0°

and 5° were compared (fig. ll(c)). Subsequently
during the test, a case at c_--4 ° from an early

transonic run (run A in fig. 12) was repeated four

times (runs B, C, D, and E in fig. 12). Force and
moment data were compared (figs. 12(a) and 12(b)),

and pressure distributions were compared for two

points with a similar normal-force coefficient (runs A

and E in fig. 12(c)).

Some small differences were evident in the re-

peated data. An angle-of-attack disagreement of

about 0.1 ° occurred in figure ll(a) for cn = 0.50

to 0.70 and in figure 12(a) for Cn = 0.96. (See the

triangle symbol for run D.) This uncertainty may re-
late to some play in the mechanism that measures

the angle of attack. Repeatability of Cm is very

good (fig. ll(a)) and repeatability of c d is approx-

imately 0.0002 0.0003 (fig. ll(b)). A consistent (but

small) shift occurred in the Cp level on both the up-
per and lower surfaces between runs A and B for

c_---0 ° in figure l l(c), even though the measured
Mach number was exactly 0.250 for the data points

in figure ll(c). Because this type of shift is not

present for c_ -- 5 °, it may be due to some adjustment

that may have been made during the tunnel check-
out that was in progress during run A of figure 11.

The pressure distribution comparisons for (_ = 5° in

figure ll(c) and c_ = 4° in figure 12(c) show a small

shift in the upper surface Cp level for x/c = 0 to 0.4,
which is explained by a small difference in a (and

the corresponding cn values) between the two points
in each case. The data from run B in figure 11 and

from run A in figure 12 are included in the following

data without the designation of run A or run B.

Force and Moment Coefficients

The effect of free-stream Mach number on inte-

grated force and moment coefficients at a constant

Reynolds number is presented in figure 13 for the fol-
lowing five Reynolds numbers: 3.0 x 106, 4.5 x 106,
6.5 x 106, 9.0 x 106, and 13.5 x 106. The data at

Rc = 4.5 x 106 (figs. 13(c) and 13(d)) are replot-

ted in the appendix (fig. A1) with different scales

to show the data for Cn > 1.2 at M_ ,_ 0.250. For
the data at constant Reynolds number, the general

trends with increasing Mach number are described
as follows: the maximum normal-force coefficient de-

creases; and, for a constant Cn in the linear Cn-C_

range, the Cn c_ slope increases, the negative pitch-
ing moment becomes more negative, and the drag
coefficient increases. However, the drag coefficient in

the linear cn-a range at Rc = 9.0 x 106 (fig. 13(h))

for Moc _ 0.250 is larger than that for Moo _ 0.500.

This trend reversal is suspected to have been caused

by boundary-layer transition ahead of the transition

strips which could result from a high turbulence level
at Moc _ 0.250. The tunnel total pressure for a con-

stant Reynolds number was higher at Moo _ 0.250
than it was at Moc _ 0.500.

The effect of free-stream Reynolds number at

a constant Mach number on integrated force and

moment coefficients is presented in figure 14 for

Maeh numbers of 0.250, 0.500, 0.600, 0.655, 0.670,



0.700,0.735,and 0.760. The effectof Reynolds
numberon normal-forcecoefficientis small. (See
especiallyfigs.14(g)and14(m).)Part of theeffect
maybecausedby someplayin themechanismthat
measuresangleof attackasmentionedpreviouslyin
the discussionof figurell(a) in the section"Data
Repeatability,"wherec_wasfoundto bcrepeatable
onlywithin t0.1°. Tileeffectis in thedirectionof a
highernormal-forcecoefficientat a higherReynolds
number,whichisexpected,becausetheaft camberin
theairfoilcanbeeffectivelyreducedbytheboundary
layer.AsReynoldsnumberincreases,theboundary
layerbecomesthinnerandlesseffectiveat reducing
aft camber.Thenegativepitchingmomentbecomes
morenegativewith increasingReynoldsnumbers,
whichis alsoexpected,becausea thinnerboundary
layeris lesseffectiveat decamberingoverthe rear
part of theairfoil.

For low drag levels(cd < 0.01), drag coefficient

at a constant Cn decreases with increasing Reynolds
number for Mach numbers up to 0.735. This

trend is expected because skin-friction drag de-
crcases as Reynolds number increases. This gen-

eral trend is not seen at Moc _ 0.760 (fig. 14(p)).
For Mcc _ 0.760 at cn _-0.05, 0.2, and 0.4, the

presencc of shock waves can bc seen in the pres-

sure distributions presented in figure 15. (Note that

the level of the sonic pressure coefficient (Cp*) is

indicated.) As Reynolds number is increased, the
increases in wave drag can overcome decreases in fric-

tion drag, At cn _ -0.05, the drag coefficient in-

creases as Reynolds number increases (fig. 14(p)) be-
cause the lower surface shock wave becomes stronger

(fig. 15(a)). However, for Cn ._ 0.2, the drag co-
efficient decreases as Rc increases from 4.5 × 106

to 6.5 × 106; then, for Rc = 9.0 × 106 the drag co-

efficient does not decrease farther (fig. 14(p)) be-
cause the shock waves on both airfoil surfaces be-

come stronger (fig. 15(b)). At cn _ 0.4, the drag
coefficient again increases as Reynolds number in-

creases (fig. 14(p)) because the upper surface shock

wave becomes stronger (fig. 15(c)).

Chordwise Pressure Distributions

The effect of angle of attack on chordwise pres-

sure distributions is presented in figures 16 to 24 for

the program of ItIcc-Rc test conditions in table 5.
In figures 17 to 24 the level of the sonic pressure co-

efficient (Cp*) is included as an aid in understand-
ing which areas on the model have local supersonic

or near-supersonic flow. Tile Cp scale increment per
grid division is changed from -0.4 to -0.2 for fig-

ures 22 to 24 to better display the features of the

pressure distributions at high Mach numbers.
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The plotted pressure distributions for each

M_-Rc combination include a representative set of
four or five angles of attack which is sufficient for

covering the available range of data and illustrating

the onset of separation. The following comments ap-

ply to figures A2 and 17 to 24. (See, for example,
fig. 17(a).) The behavior of the upper surface suc-

tion peak indicatcs that separation does not begin

at the leading edge. As angle of attack increases,

the upper surface suction peak near the lcading edge
remains intact as the positive trailing-edge pressure

coefficient begins to become more negative, a result

which indicates that separation begins at the trailing

edge. The data in figures 18 to 24 (see, for example,

fig. 18(a)) show that as angle of attack increases, the
upper surface shock wave reaches a maximum rear-

ward location, and then moves forward as separation
begins.

Free Transition

Free-transition data were obtained at the end of

the test at the following five combinations of Moc-Rc:
0.655 4.5x 106 , 0.735 4.5x 106 , 0.700 6.5 x 106 ,

0.655 9.0x 106 , and 0.735 9.0x 106 . The effect of
fixed transition on force and moment coefficients

is presented in figure 25, and the effect of angle

of attack on pressure distributions with free tran-

sition is presented in figure 26. The effects of fixed
transition on c** and cm discussed below arc illus-
trated at the _I_c-Rc combinations for the two de-

sign points (0.655 4.5 x 106 and 0.735 9.0 x 106) by

showing the effect of fixed transition on pressure dis-

tributions in figure 27. To make small differences

in Cp visible, the Cp scale in figure 27(a) has a grid
line increment of -0.2, unlike that in figure 26(a).

Fixed transition generally caused decreased en,

less negative cm, and increased cd in the linear

cn-c_ range (fig. 25). The effects of fixed tran-

sition are largest at the lowest Reynolds number
(4.5 x 106) and highest Math number (0.735). The

slightly decreased Cn with fixed transition for the
0.655 4.5 x 106 combination in figure 25(a) results

from slight decreases in loading over most of the

airfoil surface that outweigh localized increases in

loading (fig. 27(a)). The very slight decrease in Cn
with fixed transition for the 0.735 9.0 x 106 com-

bination in figure 25(e) results primarily from de-
creased loading on the upper surface from x/c = 0.2

to 0.5 (fig. 27(b)). The slightly less negative cm
with fixed transition for the 0.655 4.5 x 106 com-

bination in figure 25(a) results primarily from the

slight decrease in aft loading in figure 27(a). The

slightIy less negative Cm with fixed transition for the
0.735-9.0 x 10" combination in figure 25(e) results



fromboth a slight increasein front loadingand a
slightdecreasein loadingaft of x/c = 0.25 in fig-

ure 27(b). These changes in load distribution re-
sult from shorter runs of laminar flow on the up-

per and/or lower surfaces with fixed transition. The

increase in drag coefficient for both Mcc Rc combi-

nations (see figs. 25(b) and 25(f)) is a result of the

higher drag of the turbulent boundary layer and is
more significant for the 0.655 4.5 × 10°combination.

Concluding Remarks

A wind tunnel test of a baseline executive-jet
airfoil model was conducted in the two-dimensional

adaptive-wall test section of the Langley 0.3-Meter
Transonic Cryogenic Tunnel to measure aerodynamic

characteristics for a wide range of flow conditions.

Top and bottom wall interference was minimized

by the appropriate movement of the flexible (adap-

tive) walls, and the data were corrected for resid-
ual wall effects. For increasing Mach number, the

maximum normal-force coefficient decreased. With

increasing Mach number at a constant normal-force
coefficient in the linear range of normal-force co-

efficient (cry) versus angle of attack (a), increases

occurred in the cn-a slope, the negative pitching-

moment coefficient, and the drag coefficient. With

increasing Reynolds number at a constant normal-
force coefficient, the negative pitching-moment

coefficient became more negative and the drag co-

efficient decreased. The pressure distributions re-

vealed that separation began at the trailing edge.

Fixed transition generally resulted in higher drag co-

efficients (particularly for the lowest Reynolds num-

ber), slightly lower normal-force coefficients, and
slightly less negative pitching-moment coefficients.

NASA Langley Research Center
Hampton, VA 23681-0001
September 29, 1993



Appendix

Data for cn > 1.2

This appendix presents data at high normal-force

coefficients (for angles of attack up to 14° ) that
were made possible by the adaptive tunnel walls at
Moc _ 0.250 and Rc = 4.5 x 106, All normal-force

coefficients are less than 1.2 at all other conditions.

The data in this appendix were taken with fixed tran-

sitiou. The force and moment data from figures 13(c)

and 13(d) along with the data for Cn > 1.2 are pre-

sented in figure A1. Pressure distributions for a = 0 °

and 7.4 ° from figure 16(a) along with other data se-
lected from points in figure A1 are presented in fig-

ure A2. The cn and Cp scales in figures A1 and A2 are
different from those in figures 13 and 16, respectively,
to accommodate the additional data.

8
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Figure A2. Effect of angle of attack at Moc _, 0.250 and Rc = 4.5 x 106. Open symbols denote upper surface;

"+" within symbol denotcs lower surface.
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Table 1. Locations of Jacks for Flexible-Wall Positioning

[Jack station locations are referenced to center of turntable]

Jack Location, in. Notes

1

2

3
4

5
6

7

8
9

10

11
12

13

14

15
16

17

18
19

20

21

-31.25
-30.25

-26.00

-20.25

-15.25

-11.25

-8.25
-6.25

-4.75

-3.25
-1.75

-.25

1.25
2.75

4.75

6.75

8.75
11.75

15.75

20.75
25.75

30.75

36.75

Pressure orifice near test section entrance

Anchor point
First test section jack

Lower wall jack at this station not operational

Last test section jack
Start of transition section

13



Table2. DesignAirfoil Coordinates

Upper surface

0.00000

.00099

.00301

.00604

.01005

.01500

.02088

.02764

.03528

.04374

.05302

.06308

.07389

.08543

.09766

.11056

.12411

.13826

.15300

.16830

.18413

.20045

.21725

.23450
.25216

.27021

.28863

.30737

.32642

.34575

.36533

.38513

.40512

.42527

0.00000

.00635

.01117

.01562

.01974

.02362

.02731

.03076

.03395

.03692

.03969

.04230

.04477

.04713

.04937

.05152

.05358

.05554

.05740

.05915

.06078

.06228

.06364

.06484

.06587

.06674

.06743

.06796

.06831

.06851

.06854

.06840

.06809

.06760

Lower surface

0.00000

.00099

.OO3O1

.00604

.01005

.01500

.02088

.02764

.03528

.04374

.05302

.06308

.07389

.08543

.09766

.11056

.12411

.13826

.15300

.1683O

.18413

.20045

.21725

.23450

.25216

.27021

.28863

.30737

.32642

.34575

.36533

.38513

.40512

.42527

y/c

0.00000

-.00489

-.00821

-.01132
-.01431

-.01702

-.01949
-.02183

-.02407

-.02622
-.02830

-.03035

-.03234
-.03428

-.03617

-.03797
-.03968

-.04126

-.04270
-.04400

-.04512

-.04605

-.04680

-.04735
-.04769

-.04783

-.04777
-.04751

-.04705

-.04642

-.04561
-.04465

-.04355

-.04233

Upper surface Lower surface

x/c y/c

0.44557

.46597

.48646

.50699

.52756

.54812

.56865

.58912

.60950

.62977

.64990

.66986

.68962

.70915

.72843

.74742

.76611

.78445

.80243

.82002

.83718

.85389

.87013

.88585

.90105

.91568

.92972

.94314

.95592

.96802

.97942

.99009

1.00000

0.06691

.06601

.06488

.06353

.06197

.06020

.05826

.05617

.05397

.05168

.04933

.04692

.04448

.04200

.03948

.03694

.03438

.03181

.02922

.02665

.02409

.02157

.01910

.01670

.01438

.01217

.01006

.00807

.00621

.00447

.00285

.00136

.00000

0.44557

.46597

.48646

.50699

.52756

.54812

.56865

.58912

.60950

.62977

.64990

.66986

.68962

.70915

.72843

.74742

.76611

.78445

.80243

.82002

.83718

.85389

.87013

.88585

.901O5

.91568

.92972

.94314

.95592

.96802

.97942
.99009

1.00000

-O.04100
-.03958

-.03808

-.03651
-.03487

-.03317

-.03141

-.02961
-.02777

-.02591
-.02403

-.02214

-.02027
-.01842

-.01662

-.01489

-.01324
-.01170

-.01028

-.00897
-.00781

-.00678

-.00591

-.0O52O

-.00463
-.00423

-.00397

-.00385
-.00386

-.00398

-.00421

-.00453

-.00490
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Table3. MeasuredAirfoil Coordinates

Uppersurface Lowersurface

x/c y/c x/c y/c

0.00000
.00013

.00036

.00072

.00121

.00180

.00248

.00332

.00432

.00535

.00661

.00800

.00957

.01134

.01331

.01552

.01793

.02051

.02340

.02646

.03001

.03387

.03785

.04249

.04737

.05266

.05861
,06499

.07202

.07959

.08799

.09712

.10712

.11805

.13004

.14303

.15718

.17255

.18943

.20758

.22739

.24866

-0.00018
.00173

.00324

.00470

.00637

.00795

.00949

.01115

.01283

.01433

.01596

.01753

.01910

.02068

.02225

.02383

.02541

.02694

.02853

.03005

.03168

.03328

.03478

.03639

.03794

.03948

.04108

.04266

.04429

.04588

.04755

.04923

.05094

.05267

.05441

.05616

.05790

.05962

.06129

.O6287

.06437

.O6571

0.00000

.00006

.00026

.00059

.00100

.00161

.00226

.00301

.00400

.00504

.00629

.00773

.00929

.01115

.01310

.01525

.01770

.02029

.02322

.02645

.02984

.03363

.03768

.04236

.04724

.05263
.05847

.06482
.07190

.07948

.08788

.09707

.10710

.11797

.12980

.14297

.15721

.17259

.18941

.20758

.22726

.24853

-0.00018

-.00117

-.00235

-.00357
-.00469

-.00592

-.00703

-.00811

-.00929
-.01042

-.01158

-.O1276

-.01387

-.01506
-.01616

-.01722

-.01831

-.01936
-.02046

-.02156

-.02263

-.02374
-.02485

-.02605

-.02722

-.02844
-.02968

-.03095
-.03227

-.03359

-.03497

-.03637
-.03779

-.03920

-.04060

-.04201

-.04334
-.04458

-.04569

-.04662
-.04736

-.04783

Upper surface Lower surface

z/c y/cx/c y/c

0.27144 0.06684

.29567 .06771

.32149 .06831

.34888 .06859

•37755 .06853

.40717 .06810

.43757 .06729

.46866 .06596

,50004 .06411

.53135 .06174

.56238 .05895

.59290 .05586

.62243 .05264

.65093 .04935

,67834 .04604

.70403 .04281
•72850 .03962

.75113 .03661

.77245 .03370

,79225 .03092

,81047 .02829
.82727 .02577

.84258 .02343

.85698 .02121

.86995 .01919

.88194 .01732

.89269 .01566

.90269 .01412

.91195 .01270

.92033 .01144

.93496 .00929

.94729 .00753

.95755 ,00609

.96608 .00492

.97349 .00389

.97944 .00307

.98446 .00235

.98879 .00174

.99218 .00123

.99592 .00062

1.00000 -.00017

0.27151
.29598

.32179

.34911

.37763

.40723

.43767

.46875

.50001

.53139

.56255

.59296

.62258

.65111

.67821

.70422

.72834

.75125

.77260

.79211

.81036

.82722

.84278

.85686

.86994

.88184

.89284

.90286

.91192

.92029

.93496

.94717

.95736

.96596

.97317

.97932

.98439

.98847

.99182

.99573

1.00000

-0.04802
-.04787

-.04736

-.04647

-.04521
-.04360

-.04170

-.03953

-.03718

-.03467

-.03204
-.02933

-.02658

-.02399

-.02156
-.01914

-.01680

-.01463

-.01272
-.01111

-.00969

-.00849

-.00747

-.00663
-.00595

-.00539

-.00495
-.00461

-.00437

-.00418
-.00397

-.00391

-.00397

-.00407
-.00419

-.00433

-.00446

-.00457
-.00468

-.00480

-.00473
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Table4. OrificeLocations

Uppersurface Lowersurface

x/e
0.00000

.00482

.01072

.06040

.08032

.10018

.15031

.19999

.25008

.30009

.34008

.37985

.41952

.45951

.49968

.53960

.58038

.61948

.65947

.69920

.74927

.79948

.84950

.89919

.94951

1.00000

y/c

0.00000

.01350

.02006

.04145

.04595

.04968

.05700

.06217

.06574

.06779

.06850

.06847

.06779

.06638

.06412

.061O3

.05716

.05297

.04834

.04344

.03689

.02992

.02241

.01471

.00728

-.00245

x/c

0.00484

.00973

.01983

.04998

.08002

.11985

.18013

.23973

.30012

.36012

.42040

.48012

.54025

.60018

.65006

.72036

.77005

.89966

.94999

1.00000

y/c

-0.01033

-.01427
-.01928

-.02794

-.03376

-.03951
-.04518

-.04774

-.04786

-.04606
-.04284

-.03870

-.03394

-.02866
-.02407

-.01754

-.01291
-.00465

-.00385

-.00245

Tablc 5. Program of Test Conditions

[Dashed underlines indicate Moo-Re combinations for two design points]

Rc

18.0 × 106

13.5

9.0

6.5

5.0

4.5

3.0

Figures for pressure distributions at values of M_ of--

0.250 0.500 0.600 0.655 0.670 0.700 0.735 0.760 0.780

16(b)

16(a)

17(b)

17(a)

18(b)

18(a)

19(d)

19(c)

1_9(b_

19(a)

20(b)

20(a)

21(f)

21(e)

21(d)

21(c)

21(b)

21(a)

22(d)

_2_c_

22(b)

22(a)

23(e)

23(b)

23(a)

24

16
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ORtGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Angle - of- a!lack drive rod

ili!ii

i

Wake rake supporI block

Opening for turnlable

L-87-8385

Figure 4. Photograph of flow region of adaptive-wall test section with plenum sidewall removed.
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Figure 5. Photograph of region where model is installed.

L-87-659
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/- Tunnel sidewall location

6.500

-..l-- Centerline of tunnel

1.002

.750

___ I----t- o.688-- 1.000

Probe spacing

/ I°
0.625

Static pressure probes

_" _o o 0 ol0_- 0 0

0.375

Details of static pressure probes

Figure 6. Sketches of wake survey probe.

 . oo4oo0.062D

Details of total pressure probes

All dimensions are given in inches.
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O r,,t.DiNALPAGE

BLACK AND WHITE pI-iOTC')(_RAPH

Left sidewall

Figure 7. Photograph of wake survey probe mounted in center survey station.
upstream of photograph.

L-89-49

Edge of turntable is just
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BLACK AND WHITE P_C.;TC__(-,RAPH

Figure 8. Airfoil model in mounting blocks that fit into turntable.
L-91-16195

6.00 in. >

Figure 9. Airfoil section showing pressure orifice locations.
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Cp

-.8

O Experiment
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Without interpolated point

With interpolated point

0

Location of interpolated

pressure coefficient

.8 I I I I
0 .05 .10 .15 .20

x/c

Figure 10. Effect of adding interpolated pressure coefficient point on curve fit. Mec _ 0.700; Rc = 6.5 x 106;

cn = 0.69.
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o B 0 .260

<> A 5.1 .854

tx B 5.2 .866

1.2
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

x/c

(c) Pressure distributions. Open symbols denote upper surface; "+" within symbol denotes lower surface.

Figure 11. Concluded.
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(e) Pressure distributions. Open symbols denote upper surface; "+" within symbol denotes lower surface.

Figure 12. Concluded.
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Figure 26. Continued.
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